

Elasticity	Questions	Other tensors in physics (1)
 Linear relationship between the stress tensor σ and the strain tensor ε Tensorial expression σ = C:ε ε = S:σ C: elastic constants - S: elastic compliances C = S⁻¹ (much easier to evaluate in the reduced Voigt form) Component expression σ_{ij} = C_{ijkl} c_{kl}; ε_{ij} = S_{ijkl} σ_{kl}; Young's modulus = stress in tension / strain in tension Anisotropic Young's modulus : 1/S'₁₁₁₁, where S' is expressed in an appropriate reference frame Appropriate reference frame: reference frame in which tension is along axis 1. 	 What is the difference between elastic and plastic behavior Define the Young's modulus What is a tensor? Define what are the stress, strain, and elastic tensors. What is the reduced Voigt notation? What is the effect of crystal symmetry on the Cij's? Spell out the elastic tensor for a cubic, hexagonal and orthorhombic crystal systems. 	$\begin{tabular}{ c c c c c c c } \hline \hline Property & Symbol & Field & Response & Type \# \\ \hline \hline Tensors of Rank 0 (Scalars) & & & \\ \hline \hline Tensors of Rank 1 (Vectors) & & & \\ \hline \hline Tensors of Rank 1 (Vectors) & & & \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$
CUniversité de Lille Unité Matériaux et Transformations Unité Matériaux et Transformations 111	© S. Merkel Ge Lille Unité des Sciences et Technologies Unité Matériaux et Transformations 112	Source: T. Rollet – Original source: M. De Graef Université de Lille Source: T. Rollet – Original source: M. De Graef S. Merkel Faculté des Sciences et Technologies Unité Matériaux et Transformations 113
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Imperfections - deformation and microstructures in polycrystals 4- Polycrystals properties <i>b</i> - Elasticity in random polycrystals	Average propertiesPolycrystal, with an infinite number of grains, randomly oriented and covering the full orientation spaceIsotropic material2 independent elastic coefficients:E and v;- K and G;Matrix form: $S = \begin{bmatrix} \frac{1}{E} & -\frac{\nu}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & -\frac{\nu}{E} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \end{bmatrix}$ $G = \frac{E}{2(1+\nu)}$ $K = \frac{E}{3(1-2\nu)}$
Third order elasticity c_{ijklmm} $\epsilon_{kl}\epsilon_{mm}$ σ_{ij} E56 Université de Lille	© S. Merkel Ge Lille Sciences et Technologies Unité Matériaux et Transformations 115	$\bigcup_{\substack{a}} 0 0 0 0 0 \frac{1}{G} \end{bmatrix}$

